164 research outputs found

    Nonlinear modes for the Gross-Pitaevskii equation -- demonstrative computation approach

    Full text link
    A method for the study of steady-state nonlinear modes for Gross-Pitaevskii equation (GPE) is described. It is based on exact statement about coding of the steady-state solutions of GPE which vanish as x→+∞x\to+\infty by reals. This allows to fulfill {\it demonstrative computation} of nonlinear modes of GPE i.e. the computation which allows to guarantee that {\it all} nonlinear modes within a given range of parameters have been found. The method has been applied to GPE with quadratic and double-well potential, for both, repulsive and attractive nonlinearities. The bifurcation diagrams of nonlinear modes in these cases are represented. The stability of these modes has been discussed.Comment: 21 pages, 6 figure

    Dissipative surface solitons in periodic structures

    Full text link
    We report dissipative surface solitons forming at the interface between a semi-infinite lattice and a homogeneous Kerr medium. The solitons exist due to balance between amplification in the near-surface lattice channel and two-photon absorption. The stable dissipative surface solitons exist in both focusing and defocusing media, when propagation constants of corresponding states fall into a total semi-infinite and or into one of total finite gaps of the spectrum (i.e. in a domain where propagation of linear waves is inhibited for the both media). In a general situation, the surface solitons form when amplification coefficient exceeds threshold value. When a soliton is formed in a total finite gap there exists also the upper limit for the linear gain.Comment: 5 pages, 3 figures, to appear in Europhysics Letter

    Wannier functions analysis of the nonlinear Schr\"{o}dinger equation with a periodic potential

    Full text link
    In the present Letter we use the Wannier function basis to construct lattice approximations of the nonlinear Schr\"{o}dinger equation with a periodic potential. We show that the nonlinear Schr\"{o}dinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to Bose-Einstein condensate theory as well as to other physical systems like, for example, electromagnetic wave propagation in nonlinear photonic crystals.Comment: 5 pages, 1 figure, submitted to Phys. Rev.

    Mixed symmetry localized modes and breathers in binary mixtures of Bose-Einstein condensates in optical lattices

    Full text link
    We study localized modes in binary mixtures of Bose-Einstein condensates embedded in one-dimensional optical lattices. We report a diversity of asymmetric modes and investigate their dynamics. We concentrate on the cases where one of the components is dominant, i.e. has much larger number of atoms than the other one, and where both components have the numbers of atoms of the same order but different symmetries. In the first case we propose a method of systematic obtaining the modes, considering the "small" component as bifurcating from the continuum spectrum. A generalization of this approach combined with the use of the symmetry of the coupled Gross-Pitaevskii equations allows obtaining breather modes, which are also presented.Comment: 11 pages, 16 figure

    Quantum signatures of breather-breather interactions

    Full text link
    The spectrum of the Quantum Discrete Nonlinear Schr\"odinger equation on a periodic 1D lattice shows some interesting detailed band structure which may be interpreted as the quantum signature of a two-breather interaction in the classical case. We show that this fine structure can be interpreted using degenerate perturbation theory.Comment: 4 pages, 4 fig
    • …
    corecore